Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 225: 105844, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428749

RESUMO

The Third International Conference on Crimean-Congo Hemorrhagic Fever (CCHF) was held in Thessaloniki, Greece, September 19-21, 2023, bringing together a diverse group of international partners, including public health professionals, clinicians, ecologists, epidemiologists, immunologists, and virologists. The conference was attended by 118 participants representing 24 countries and the World Health Organization (WHO). Meeting sessions covered the epidemiology of CCHF in humans; Crimean-Congo hemorrhagic fever virus (CCHFV) in ticks; wild and domestic animal hosts; molecular virology; pathogenesis and animal models; immune response related to therapeutics; and CCHF prevention in humans. The concluding session focused on recent WHO recommendations regarding disease prevention, control strategies, and innovations against CCHFV outbreaks. This meeting report summarizes lectures by the invited speakers and highlights advances in the field.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Animais , Humanos , Febre Hemorrágica da Crimeia/epidemiologia , Grécia , Surtos de Doenças
2.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409240

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Feminino , Animais , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Anticorpos Monoclonais , Febre Hemorrágica da Crimeia/prevenção & controle , Glicoproteínas/metabolismo , Anticorpos Antivirais
3.
Virus Res ; 334: 199173, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37459918

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is a World Health Organization prioritized disease because its broad distribution and severity of disease make it a global health threat. Despite advancements in preclinical vaccine development for CCHF virus (CCHFV), including multiple platforms targeting multiple antigens, a clear definition of the adaptive immune correlates of protection is lacking. Levels of neutralizing antibodies in vaccinated animal models do not necessarily correlate with protection, suggesting that cellular immunity, such as CD8+ T cells, might have an important role in protection in this model. Using a well-established IFN-I antibody blockade mouse model (IS) and a DNA-based vaccine encoding the CCHFV M-segment glycoprotein precursor, we investigated the role of humoral and T cell immunity in vaccine-mediated protection in mice genetically devoid of these immune compartments. We found that in the absence of the B-cell compartment (µMT knockout mice), protection provided by the vaccine was not reduced. In contrast, in the absence of CD8+ T cells (CD8+ knockout mice) the vaccine-mediated protection was significantly diminished. Importantly, humoral responses to the vaccine in CD8+ T-cell knockout mice were equivalent to wild-type mice. These findings indicated that CD8+ T-cell responses are necessary and sufficient to promote protection in mice vaccinated with the M-segment DNA vaccine. Identifying a crucial role of the cellular immunity to protect against CCHFV should help guide the development of CCHFV-targeting vaccines.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Vacinas de DNA , Animais , Camundongos , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vacinas de DNA/genética , Linfócitos T CD8-Positivos , Camundongos Knockout
4.
Nat Commun ; 13(1): 7298, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435827

RESUMO

Crimean-Congo Hemorrhagic Fever Virus (CCHFV) causes a life-threatening disease with up to a 40% mortality rate. With no approved medical countermeasures, CCHFV is considered a public health priority agent. The non-neutralizing mouse monoclonal antibody (mAb) 13G8 targets CCHFV glycoprotein GP38 and protects mice from lethal CCHFV challenge when administered prophylactically or therapeutically. Here, we reveal the structures of GP38 bound with a human chimeric 13G8 mAb and a newly isolated CC5-17 mAb from a human survivor. These mAbs bind overlapping epitopes with a shifted angle. The broad-spectrum potential of c13G8 and CC5-17 and the practicality of using them against Aigai virus, a closely related nairovirus were examined. Binding studies demonstrate that the presence of non-conserved amino acids in Aigai virus corresponding region prevent CCHFV mAbs from binding Aigai virus GP38. This information, coupled with in vivo efficacy, paves the way for future mAb therapeutics effective against a wide swath of CCHFV strains.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Camundongos , Humanos , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/química , Febre Hemorrágica da Crimeia/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Epitopos , Anticorpos Monoclonais
5.
PLoS Pathog ; 18(5): e1010485, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35587473

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. In cell culture, CCHFV is sensed by the cytoplasmic RNA sensor retinoic acid-inducible gene I (RIG-I) molecule and its adaptor molecule mitochondrial antiviral signaling (MAVS) protein. MAVS initiates both type I interferon (IFN-I) and proinflammatory responses. Here, we studied the role MAVS plays in CCHFV infection in mice in both the presence and absence of IFN-I activity. MAVS-deficient mice were not susceptible to CCHFV infection when IFN-I signaling was active and showed no signs of disease. When IFN-I signaling was blocked by antibody, MAVS-deficient mice lost significant weight, but were uniformly protected from lethal disease, whereas all control mice succumbed to infection. Cytokine activity in the infected MAVS-deficient mice was markedly blunted. Subsequent investigation revealed that CCHFV infected mice lacking TNF-α receptor signaling (TNFA-R-deficient), but not IL-6 or IL-1 activity, had more limited liver injury and were largely protected from lethal outcomes. Treatment of mice with an anti-TNF-α neutralizing antibody also conferred partial protection in a post-virus exposure setting. Additionally, we found that a disease causing, but non-lethal strain of CCHFV produced more blunted inflammatory cytokine responses compared to a lethal strain in mice. Our work reveals that MAVS activation and cytokine production both contribute to CCHFV pathogenesis, potentially identifying new therapeutic targets to treat this disease.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Citocinas , Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Camundongos , Camundongos Knockout , Índice de Gravidade de Doença , Inibidores do Fator de Necrose Tumoral
6.
Front Cell Infect Microbiol ; 12: 798978, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463647

RESUMO

Junín virus (JUNV), a New World arenavirus, is a rodent-borne virus and the causative agent of Argentine hemorrhagic fever. Humans become infected through exposure to rodent host secreta and excreta and the resulting infection can lead to an acute inflammatory disease with significant morbidity and mortality. Little is understood about the molecular pathogenesis of arenavirus hemorrhagic fever infections. We utilized Reverse Phase Protein Microarrays (RPPA) to compare global alterations in the host proteome following infection with an attenuated vaccine strain, Candid#1 (CD1), and the most parental virulent strain, XJ13, of JUNV in a human cell culture line. Human small airway epithelial cells were infected with CD1 or XJ13 at an MOI of 10, or mock infected. To determine proteomic changes at early timepoints (T = 1, 3, 8 and 24 h), the JUNV infected or mock infected cells were lysed in compatible buffers for RPPA. Out of 113 proteins that were examined by RPPA, 14 proteins were significantly altered following JUNV infection. Several proteins were commonly phosphorylated between the two strains and these correspond to entry and early replication events, to include p38 mitogen-activated protein kinase (MAPK), heat shock protein 27 (HSP27), and nuclear factor kappa B (NFκB). We qualitatively confirmed the alterations of these three proteins following infection by western blot analysis. We also determined that the inhibition of either p38 MAPK, with the small molecule inhibitor SB 203580 or siRNA knockdown, or HSP27, by siRNA knockdown, significantly decreases JUNV replication. Our data suggests that HSP27 phosphorylation at S82 upon virus infection is dependent on p38 MAPK activity. This work sheds light on the nuances of arenavirus replication.


Assuntos
Febre Hemorrágica Americana , Vírus Junin , Proteínas de Choque Térmico HSP27 , Humanos , Vírus Junin/genética , Proteômica , RNA Interferente Pequeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno
7.
J Gen Virol ; 103(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35412967

RESUMO

Crimean-Congo haemorrhagic fever virus (CCHFV) is the medically most important member of the rapidly expanding bunyaviral family Nairoviridae. Traditionally, CCHFV isolates have been assigned to six distinct genotypes. Here, the International Committee on Taxonomy of Viruses (ICTV) Nairoviridae Study Group outlines the reasons for the recent decision to re-classify genogroup VI (aka Europe-2 or AP-92-like) as a distinct virus, Aigai virus (AIGV).


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Genótipo , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos
8.
mBio ; 13(1): e0290621, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073750

RESUMO

The rapid emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created a global health emergency. While most human disease is mild to moderate, some infections lead to a severe disease characterized by acute respiratory distress, hypoxia, anosmia, ageusia, and, in some instances, neurological involvement. Small-animal models reproducing severe disease, including neurological sequela, are needed to characterize the pathophysiological mechanism(s) of disease and to identify medical countermeasures. Transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the K18 promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge when high viral doses are used. Here, we report on SARS-CoV-2 infection of hamsters engineered to express the hACE2 receptor under the control of the K18 promoter. K18-hACE2 hamsters infected with a relatively low dose of 100 or 1,000 PFU of SARS-CoV-2 developed a severe and lethal disease, with most animals succumbing by day 5 postinfection. Hamsters developed severe lesions and inflammation within the upper and lower respiratory system, including infection of the nasal cavities causing marked destruction of the olfactory epithelium as well as severe bronchopneumonia that extended deep into the alveoli. Additionally, SARS-CoV-2 infection spread to the central nervous system (CNS), including the brain stem and spinal cord. Wild-type (WT) hamsters naturally support SARS-CoV-2 infection, with the primary lesions present in the respiratory tract and nasal cavity. Overall, infection in the K18-hACE2 hamsters is more extensive than that in WT hamsters, with more CNS involvement and a lethal outcome. These findings demonstrate the K18-hACE2 hamster model will be valuable for studying SARS-CoV-2. IMPORTANCE The rapid emergence of SARS-CoV-2 has created a global health emergency. While most human SARS-CoV-2 disease is mild, some people develop severe, life-threatening disease. Small-animal models mimicking the severe aspects of human disease are needed to more clearly understand the pathophysiological processes driving this progression. Here, we studied SARS-CoV-2 infection in hamsters engineered to express the human angiotensin-converting enzyme 2 viral receptor under the control of the K18 promoter. SARS-CoV-2 produces a severe and lethal infection in transgenic hamsters that mirrors the most severe aspects of COVID-19 in humans, including respiratory and neurological injury. In contrast to other animal systems, hamsters manifest disease with levels of input virus more consistent with natural human infection. This system will be useful for the study of SARS-CoV-2 disease and the development of drugs targeting this virus.


Assuntos
COVID-19 , SARS-CoV-2 , Camundongos , Animais , Cricetinae , Humanos , COVID-19/patologia , Enzima de Conversão de Angiotensina 2 , Peptidil Dipeptidase A , Pulmão/patologia , Camundongos Transgênicos , Modelos Animais de Doenças
9.
J Gen Virol ; 102(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961540

RESUMO

SARS-CoV-2 is the causative agent of COVID-19 and human infections have resulted in a global health emergency. Small animal models that reproduce key elements of SARS-CoV-2 human infections are needed to rigorously screen candidate drugs to mitigate severe disease and prevent the spread of SARS-CoV-2. We and others have reported that transgenic mice expressing the human angiotensin-converting enzyme 2 (hACE2) viral receptor under the control of the Keratin 18 (K18) promoter develop severe and lethal respiratory disease subsequent to SARS-CoV-2 intranasal challenge. Here we report that some infected mice that survive challenge have residual pulmonary damages and persistent brain infection on day 28 post-infection despite the presence of anti-SARS-COV-2 neutralizing antibodies. Because of the hypersensitivity of K18-hACE2 mice to SARS-CoV-2 and the propensity of virus to infect the brain, we sought to determine if anti-infective biologics could protect against disease in this model system. We demonstrate that anti-SARS-CoV-2 human convalescent plasma protects K18-hACE2 against severe disease. All control mice succumbed to disease by day 7; however, all treated mice survived infection without observable signs of disease. In marked contrast to control mice, viral antigen and lesions were reduced or absent from lungs and absent in brains of antibody-treated mice. Our findings support the use of K18-hACE2 mice for protective efficacy studies of anti-SARS-CoV-2 medical countermeasures (MCMs). They also support the use of this system to study SARS-CoV-2 persistence and host recovery.


Assuntos
COVID-19/terapia , Lesão Pulmonar Aguda/prevenção & controle , Lesão Pulmonar Aguda/virologia , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Encéfalo/patologia , Encéfalo/virologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Modelos Animais de Doenças , Feminino , Humanos , Imunização Passiva , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Coronavírus/genética , Receptores de Coronavírus/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Carga Viral , Replicação Viral , Soroterapia para COVID-19
10.
NPJ Vaccines ; 6(1): 31, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654101

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that causes severe hemorrhagic fever disease in humans. Currently, no licensed CCHF vaccines exist, and the protective epitopes remain unclear. Previously, we tested a DNA vaccine expressing the M-segment glycoprotein precursor gene of the laboratory CCHFV strain IbAr 10200 (CCHFV-M10200). CCHFV-M10200 provided >60% protection against homologous CCHFV-IbAr 10200 challenge in mice. Here, we report that increasing the dose of CCHFV-M10200 provides complete protection from homologous CCHFV challenge in mice, and significant (80%) protection from challenge with the clinically relevant heterologous strain CCHFV-Afg09-2990. We also report complete protection from CCHFV-Afg09-2990 challenge following vaccination with a CCHFV-Afg09-2990 M-segment DNA vaccine (CCHFV-MAfg09). Finally, we show that the non-structural M-segment protein, GP38, influences CCHF vaccine immunogenicity and provides significant protection from homologous CCHFV challenge. Our results demonstrate that M-segment DNA vaccines elicit protective CCHF immunity and further illustrate the immunorelevance of GP38.

11.
J Gen Virol ; 101(8): 798-799, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32840475

RESUMO

Members of the family Nairoviridae produce enveloped virions with three single-stranded RNA segments comprising 17.1 to 22.8 kb in total. These viruses are maintained in arthropods and transmitted by ticks to mammals or birds. Crimean-Congo hemorrhagic fever virus is tick-borne and is endemic in most of Asia, Africa, Southern and Eastern Europe whereas Nairobi sheep disease virus, which is also tick-borne, causes lethal haemorrhagic gastroenteritis in small ruminants in Africa and India. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the family Nairoviridae, which is available at ictv.global/report/nairoviridae.


Assuntos
Nairovirus/classificação , Animais , Genoma Viral/genética , Humanos , Nairovirus/genética , Vírus de RNA/classificação , Vírus de RNA/genética
12.
JCI Insight ; 5(19)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-32841215

RESUMO

The emergence of SARS-CoV-2 has created an international health crisis, and small animal models mirroring SARS-CoV-2 human disease are essential for medical countermeasure (MCM) development. Mice are refractory to SARS-CoV-2 infection owing to low-affinity binding to the murine angiotensin-converting enzyme 2 (ACE2) protein. Here, we evaluated the pathogenesis of SARS-CoV-2 in male and female mice expressing the human ACE2 gene under the control of the keratin 18 promoter (K18). In contrast to nontransgenic mice, intranasal exposure of K18-hACE2 animals to 2 different doses of SARS-CoV-2 resulted in acute disease, including weight loss, lung injury, brain infection, and lethality. Vasculitis was the most prominent finding in the lungs of infected mice. Transcriptomic analysis from lungs of infected animals showed increases in transcripts involved in lung injury and inflammatory cytokines. In the low-dose challenge groups, there was a survival advantage in the female mice, with 60% surviving infection, whereas all male mice succumbed to disease. Male mice that succumbed to disease had higher levels of inflammatory transcripts compared with female mice. To our knowledge, this is the first highly lethal murine infection model for SARS-CoV-2 and should be valuable for the study of SARS-CoV-2 pathogenesis and for the assessment of MCMs.


Assuntos
Causas de Morte , Infecções por Coronavirus/patologia , Progressão da Doença , Peptidil Dipeptidase A/genética , Pneumonia Viral/patologia , Síndrome Respiratória Aguda Grave/patologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Infecções por Coronavirus/fisiopatologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pandemias , Pneumonia Viral/fisiopatologia , Síndrome Respiratória Aguda Grave/fisiopatologia , Índice de Gravidade de Doença , Taxa de Sobrevida , Replicação Viral/genética
13.
PLoS Pathog ; 15(9): e1008050, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31557262

RESUMO

Crimean-Congo hemorrhagic fever (CCHF) is the most medically important tick-borne viral disease of humans and tuberculosis is the leading cause of death worldwide by a bacterial pathogen. These two diseases overlap geographically, however, concurrent infection of CCHF virus (CCHFV) with mycobacterial infection has not been assessed nor has the ability of virus to persist and cause long-term sequela in a primate model. In this study, we compared the disease progression of two diverse strains of CCHFV in the recently described cynomolgus macaque model. All animals demonstrated signs of clinical illness, viremia, significant changes in clinical chemistry and hematology values, and serum cytokine profiles consistent with CCHF in humans. The European and Asian CCHFV strains caused very similar disease profiles in monkeys, which demonstrates that medical countermeasures can be evaluated in this animal model against multiple CCHFV strains. We identified evidence of CCHFV persistence in the testes of three male monkeys that survived infection. Furthermore, the histopathology unexpectedly revealed that six additional animals had evidence of a latent mycobacterial infection with granulomatous lesions. Interestingly, CCHFV persisted within the granulomas of two animals. This study is the first to demonstrate the persistence of CCHFV in the testes and within the granulomas of non-human primates with concurrent latent tuberculosis. Our results have important public health implications in overlapping endemic regions for these emerging pathogens.


Assuntos
Febre Hemorrágica da Crimeia/complicações , Tuberculose Latente/complicações , Testículo/patologia , Animais , Anticorpos Antivirais/sangue , Doenças Transmissíveis Emergentes/complicações , Doenças Transmissíveis Emergentes/patologia , Doenças Transmissíveis Emergentes/virologia , Citocinas/sangue , Modelos Animais de Doenças , Progressão da Doença , Granuloma/microbiologia , Granuloma/patologia , Granuloma/virologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/patologia , Febre Hemorrágica da Crimeia/virologia , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Tuberculose Latente/microbiologia , Tuberculose Latente/patologia , Macaca fascicularis , Masculino , Testículo/microbiologia , Testículo/virologia
14.
Sci Adv ; 5(7): eaaw9535, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309159

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important human pathogen. Limited evidence suggests that antibodies can protect humans against lethal CCHFV disease but the protective efficacy of antibodies has never been evaluated in adult animal models. Here, we used adult mice to investigate the protection provided against CCHFV infection by glycoprotein-targeting neutralizing and non-neutralizing monoclonal antibodies (mAbs). We identified a single non-neutralizing antibody (mAb-13G8) that protected adult type I interferon-deficient mice >90% when treatment was initiated before virus exposure and >60% when administered after virus exposure. Neutralizing antibodies known to protect neonatal mice from lethal CCHFV infection failed to confer protection regardless of immunoglobulin G subclass. The target of mAb-13G8 was identified as GP38, one of multiple proteolytically cleaved glycoproteins derived from the CCHFV glycoprotein precursor polyprotein. This study reveals GP38 as an important antibody target for limiting CCHFV pathogenesis and lays the foundation to develop immunotherapeutics against CCHFV in humans.


Assuntos
Anticorpos Monoclonais Murinos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia , Proteínas Virais/imunologia , Animais , Anticorpos Monoclonais Murinos/imunologia , Anticorpos Monoclonais Murinos/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/farmacologia , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Camundongos , Camundongos Knockout
15.
Viruses ; 11(7)2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31261754

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is an important tick-borne human pathogen endemic throughout Asia, Africa and Europe. CCHFV is also an emerging virus, with recent outbreaks in Western Europe. CCHFV can infect a large number of wild and domesticated mammalian species and some avian species, however the virus does not cause severe disease in these animals, but can produce viremia. In humans, CCHFV infection can lead to a severe, life-threating disease characterized by hemodynamic instability, hepatic injury and neurological disorders, with a worldwide lethality rate of ~20-30%. The pathogenic mechanisms of CCHF are poorly understood, largely due to the dearth of animal models. However, several important animal models have been recently described, including novel murine models and a non-human primate model. In this review, we examine the current knowledge of CCHF-mediated pathogenesis and describe how animal models are helping elucidate the molecular and cellular determinants of disease. This information should serve as a reference for those interested in CCHFV animal models and their utility for evaluation of medical countermeasures (MCMs) and in the study of pathogenesis.


Assuntos
Modelos Animais de Doenças , Vírus da Febre Hemorrágica da Crimeia-Congo/fisiologia , Febre Hemorrágica da Crimeia/virologia , Animais , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Humanos , Camundongos , Primatas
16.
Arch Virol ; 164(7): 1949-1965, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31065850

RESUMO

In February 2019, following the annual taxon ratification vote, the order Bunyavirales was amended by creation of two new families, four new subfamilies, 11 new genera and 77 new species, merging of two species, and deletion of one species. This article presents the updated taxonomy of the order Bunyavirales now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Bunyaviridae/classificação , Bunyaviridae/genética , Genoma Viral/genética , Filogenia , RNA Viral/genética
17.
Arch Virol ; 164(3): 927-941, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663021

RESUMO

In October 2018, the order Bunyavirales was amended by inclusion of the family Arenaviridae, abolishment of three families, creation of three new families, 19 new genera, and 14 new species, and renaming of three genera and 22 species. This article presents the updated taxonomy of the order Bunyavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Assuntos
Arenaviridae/classificação , Animais , Arenaviridae/genética , Arenaviridae/isolamento & purificação , Infecções por Arenaviridae/virologia , Humanos , Filogenia
18.
J Virol ; 92(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111561

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe hepatic injury in humans. However, the mechanism(s) causing this damage is poorly characterized. CCHFV produces an acute disease, including liver damage, in mice lacking type I interferon (IFN-I) signaling due to either STAT-1 gene deletion or disruption of the IFN-I receptor 1 gene. Here, we explored CCHFV-induced liver pathogenesis in mice using an antibody to disrupt IFN-I signaling. When IFN-I blockade was induced within 24 h postexposure to CCHFV, mice developed severe disease with greater than 95% mortality by 6 days postexposure. In addition, we observed increased proinflammatory cytokines, chemoattractants, and liver enzymes in these mice. Extensive liver damage was evident by 4 days postexposure and was characterized by hepatocyte necrosis and the loss of CLEC4F-positive Kupffer cells. Similar experiments in CCHFV-exposed NOD-SCID-γ (NSG), Rag2-deficient, and perforin-deficient mice also demonstrated liver injury, suggesting that cytotoxic immune cells are dispensable for hepatic damage. Some apoptotic liver cells contained viral RNA, while other apoptotic liver cells were negative, suggesting that cell death occurred by both intrinsic and extrinsic mechanisms. Protein and transcriptional analysis of livers revealed that activation of tumor necrosis factor superfamily members occurred by day 4 postexposure, implicating these molecules as factors in liver cell death. These data provide insights into CCHFV-induced hepatic injury and demonstrate the utility of antibody-mediated IFN-I blockade in the study of CCHFV pathogenesis in mice.IMPORTANCE CCHFV is an important human pathogen that is both endemic and emerging throughout Asia, Africa, and Europe. A common feature of acute disease is liver injury ranging from mild to fulminant hepatic failure. The processes through which CCHFV induces severe liver injury are unclear, mostly due to the limitations of existing small-animal systems. The only small-animal model in which CCHFV consistently produces severe liver damage is mice lacking IFN-I signaling. In this study, we used antibody-mediated blockade of IFN-I signaling in mice to study CCHFV liver pathogenesis in various transgenic mouse systems. We found that liver injury did not depend on cytotoxic immune cells and observed extensive activation of death receptor signaling pathways in the liver during acute disease. Furthermore, acute CCHFV infection resulted in a nearly complete loss of Kupffer cells. Our model system provides insight into both the molecular and the cellular features of CCHFV hepatic injury.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/patogenicidade , Febre Hemorrágica da Crimeia/patologia , Hepatócitos/patologia , Interferon Tipo I/antagonistas & inibidores , Células de Kupffer/citologia , Falência Hepática Aguda/patologia , Fígado/patologia , Animais , Anticorpos Bloqueadores/imunologia , Linhagem Celular , Chlorocebus aethiops , Citocinas/sangue , Modelos Animais de Doenças , Hepatócitos/virologia , Humanos , Interferon Tipo I/imunologia , Células de Kupffer/virologia , Fígado/lesões , Fígado/virologia , Falência Hepática Aguda/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Vero
19.
Am J Trop Med Hyg ; 98(1): 211-215, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29165231

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus of the genus Nairovirus within the family Bunyaviridae. Infection can result in general myalgia, fever, and headache with some patients developing hemorrhagic fever with mortality rates ranging from 5% to 30%. CCHFV has a wide geographic range that includes Africa, Asia, the Middle East, and Europe with nucleotide sequence variation approaching 20% across the three negative-sense RNA genome segments. While phylogenetic clustering generally aligns with geographic origin of individual strains, distribution can be wide due to tick/CCHFV dispersion via migrating birds. This sequence diversity negatively impacts existing molecular diagnostic assays, leading to false negative diagnostic results. Here, we updated a previously developed CCHFV real-time reverse transcription polymerase chain reaction (RT-PCR) assay to include strains not detected using that original assay. Deep sequencing of eight different CCHFV strains, including three that were not detectable using the original assay, identified sequence variants within this assay target region. New primers and probe based on the sequencing results and newly deposited sequences in GenBank greatly improved assay sensitivity and inclusivity with the exception of the genetically diverse strain AP92. For example, we observed a four log improvement in IbAr10200 detection with a new limit of detection of 256 PFU/mL. Subsequent comparison of this assay to another commonly used CCHFV real-time RT-PCR assay targeting a different region of the viral genome showed improved detection, and both assays could be used to mitigate CCHFV diversity for diagnostics. Overall, this work demonstrated the importance of continued viral sequencing efforts for robust diagnostic assay development.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Febre Hemorrágica da Crimeia/diagnóstico , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , DNA Viral/genética , Febre Hemorrágica da Crimeia/virologia , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
20.
PLoS Negl Trop Dis ; 11(9): e0005908, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28922426

RESUMO

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vírus da Febre Hemorrágica da Crimeia-Congo/imunologia , Febre Hemorrágica da Crimeia/prevenção & controle , Imunogenicidade da Vacina , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Animais , Modelos Animais de Doenças , Glicoproteínas/genética , Glicoproteínas/imunologia , Vírus da Febre Hemorrágica da Crimeia-Congo/genética , Vírus da Febre Hemorrágica da Crimeia-Congo/isolamento & purificação , Febre Hemorrágica da Crimeia/imunologia , Febre Hemorrágica da Crimeia/virologia , Humanos , Imunidade Humoral , Hospedeiro Imunocomprometido , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/deficiência , Receptor de Interferon alfa e beta/genética , Células Th1/imunologia , Células Th2/imunologia , Vacinação , Vacinas de DNA/administração & dosagem , Proteínas Virais/genética , Proteínas Virais/imunologia , Vacinas Virais/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...